

Effective from Session: 2022	Effective from Session: 2022-23									
Course Code	EE201	Title of the Course	LINEAR NETWORK AND SYSTEMS	L	T	P	C			
Year	2 nd	Semester	3^{rd}	3	1	0	4			
Pre-Requisite	None	Co-requisite	None							
	To acknowledge the students about basic laws and theorems									
Course Objectives	To analyze the theoretical and practical values of given circuit									
Course Objectives	To know about transient state and steady state									
	To acknowledge the students about stability, two port network and graph theory									

	Course Outcomes							
CO1	For a given network, would be able to apply the knowledge of mathematics, science, and engineering to the analysis and design of electrical circuits, Identify, formulate, and solve engineering problems in the area electrical circuits & systems.							
CO2	For a given system with dc and ac circuits, describe the different network theorems, would be able to apply, solve and verify the solutions using modern tools for lifelong learning like MATLAB.							
CO3	For given a system with two port networks described in standard form, would be able to characterize, modeling, analyze, and verify the network in terms of all network parameters.							
CO4	For given a system with RL, RC, and RLC circuits, would be able to understand, perform, formulate, and solve the differential equations for RL, RC, and RLC circuits and analyze the characteristics of the system.							
CO5	For given a system description, would be able to explore and apply to alternate system description, and implement using basic blocks for network transfer function in s-domain and Two port networks.							

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Concept and AC Network theorems	Kirchoff's law, Source transformation, loops analysis, node analysis, super mesh and super node. AC Network theorems: Superposition, Thevenin's, Norton's, Maximum power transfer theorem, Reciprocity, Substitution, Compensation, Millman's and Tellegen's theorem.	8	CO1
2	Transient and steady state analysis	8	CO2	
3	Network Synthesis	Concept of poles and zeros, transfer function, Stability, Hurwitz Polynomial, Positive real function: Definitions and properties, Synthesis of RC, LC and RL Networks using Cauer and Foster I and II forms	8	CO3
4	Two port networks	Two port parameters, Inter-Conversion of two port Parameters, Interconnections of Two port networks, Reciprocity and Symmetry, T-pie transformation.	8	CO4
5	Introduction to graph theory	Definitions: Branch, Graphs, Tree, Co- tree, Path and Loop, Concept of Planner and non planner network, Incidence, Cut-set, Tie-set matrices for planer network. loop and nodal analysis.	8	CO5

Reference Books:

- 1. M.E.Van Valkenburg, Network Analysis, PHI
- 2. J.A.Edminister, Electric Circuits, Schaum Series, PHI
- 3. W.H. Hayt and Jack.E.Kammerly, Engineering Circuit Analysis, Tata Mc Graw Hill
- 4. A.Hussain, Network and Systems, Khanna publications

e-Learning Source:

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)																
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	3	3	2	3	2	1		1	1	1		2	3	3	2	2		
CO2	3	2	3	3	2	2	1	2		1		1	3	3	3	2		
CO3	3	3	2	3	2	1							3	2	2	2		
CO4	3	2	2	3	1			1		1		1	3	3	2	2		
CO5	3	3	3	3	2	1		1		1			3	2	2	3		

Effective from Session: 2022	Effective from Session: 2022-23								
Course Code	EE203	Title of the Course	Electro Mechanical Energy Conversion I	L	T	P	C		
Year	2 nd	Semester	3 rd	3	1	0	4		
Pre-Requisite	None	Co-requisite	None						
		wledge and concept of D.C Circuit Analysis and Network Theorems Circuit.							
	Use of Steady State Analysis of Single Phase AC Circuits AC fundamentals.								
Course Objectives	 Knowledge and concept of Three Phase AC Circuits Three phase system and measuring devices. 								
	Basic concepts of Power System and Transformer								
	Study of Electromechanical energy conversion devices: AC/ DC Machines.								

	Course Outcomes							
CO1	Know about the concept of D.C Circuit Analysis and Network Theorems Circuit							
CO2	Steady State Analysis of Single Phase AC Circuits AC fundamentals.							
CO3	Know about concept of Three Phase AC Circuits Three phase system and measuring devices							
CO4	Layout of Power System and transformer							
CO5	Know about Electromechanical energy conversion devices: AC/ DC Machines							

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Principle of Electromechanical	Introduction, Energy in electromagnetic system, Flow of energy in electromechanical devices, Energy in magnetic field and co-energy, Dynamics of electromechanical systems, singly	8	CO1
2	Energy Conversion DC MACHINES	excited systems, Doubly Excited. System. Construction, function of commutator, simplex lap and wave windings, emf and torque equations, armature reaction and commutation,Remedial measures used for reducing commutation,D. C. generator characteristics	8	CO2
3	DC MACHINES AND SPECIAL MACHINES	Characteristics of dc motors, testing of dc machines, Hopkinson's test and Swinburne test, dc motor starters, speed control and braking of dc motors Special motors: universal motor, permanent magnet dc machines, hysteresis motor, reluctance motor, and stepper motor	8	CO3
4	ELECTRICAL TRANSFORMER- I	Principle of transformer action. Construction of two winding transformer, Equivalent circuits and phasor diagrams of Ideal and real transformers, Losses in transformers, Testing: open circuit, short circuit tests and Sumpner's test, per unit system, Efficiency and voltage regulation	8	CO4
5	ELECTRICAL TRANSFORMER II	Autotransformers: Introduction, Comparison with two winding transformers, Three phase transformer: Construction, phase groupings; Parallel operation, Phase transformation: Three phase to two-phase, single-phase, and six-phase, Application of different types of transformer	8	CO5

Reference Books:

- 1. Electric Machines, M.A.Mallick, IK International Pvt. Ltd New Delhi, 2009
- 2. Electrical Machinery, Fitzgerald, Kingsley (McGraw Hill),6th Edition,2020
- 3. Electrical Machines and their Applications, J Hind Marsh, 4th Edition, 1984
- 4. Fundamental of Electrical Machines, B.R. Gupta & V. Singhal ,New Age International Pub., 2005
- 5. Electric Machinery and Transformers, I.L.Kosow, PHI,2007
- 6. Electrical Machine, I J Nagrath and D P Kothari ,TMH,2004

e-Learning Source:

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)																
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	3	3	2	1	1	3						3	3	2	1	3		
CO2	3	3	3	2	1	1						2	3	2	2	2		
CO3	3	2	1	1	2	2	3					3	2	2	1	3		
CO4	3	2	2	2	3	3						2	3	3	1	2		
CO5	3	1	1	1	1	2	1					2	3	1	2	2		

Effective from Session: 2022-23										
Course Code	EE205	EE205 Title of the Course Solid State Devices & Circuit		L	Т	P	С			
Year	2 nd	Semester	3^{rd}	3	1	0	4			
Pre-Requisite	None	Co-requisite	None							
Course Objectives	adv To and To Hov app To and	ancement in conductivity facilitate and understand their various types' appeared analyze the work to develop concept lications. To analyze the analyze the design considerations and the conductivity analyze the design considerations.	concept of special purpose diodes and their industrial apprets of semiconductors material. d the advancement in transistors like JFET, MOSFET, PM blications in Industries. Analyze the frequency response, performance of small signal amplifiers and large signal ampl of feedback amplifiers, their different topologies and Interest stability and their responses for different applications, derations of the active and passive filters. How to develop the tions. To understand the constructional difference and work	IOS, N ifiers (mplem	MOS, Power a ent it	CMOS amplific for vari	etc. ers). lous			

	Course Outcomes
CO1	Analyze and designing concept of special purpose diodes for different types of operation for industrial application purpose. Understand the advancement in conductivity of semiconductors material. Analysis the different regions in which BJT operates and their applications as a switches, amplifiers etc.
CO2	Understand the advancement in transistors like JFET, MOSFET, PMOS, NMOS, CMOS etc. and their various types' applications in Industries. Analyze the frequency response of these devices as different amplifier applications. To Understand how the gain of amplifier effected with frequency changes and their applications.
CO3	To develop and analyze the performance of small signal amplifiers and large signal amplifiers (Power amplifiers). To understand and implement the various power amplifier in applications as transmitter and receiver in communication purpose.
CO4	Developing the concept of feedback amplifiers, their different topologies and Implement it for various applications. To analyze their stability and their responses for different applications.
CO5	To analyze the design considerations of the active and passive filters. How to develop the various orders of filters and their industrial applications. To understand the constructional difference and working of various types of oscillators. How the oscillators can be developed and their use in industries.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Diode and BJT	Special Diodes, LED, Zener, Varactor, Schottky barrier, photo diode, and tunnel diode: their constructions and characteristics. Bipolar Junction Transistors, biasing of BJT, equivalent	8	CO1
		circuit, Transistor as a switch, cut off and saturation region, complete static characteristics of BJT, Darlington pair.		
2	FET and MOS	Field Effect transistor: Structure and physical operation. Enhancement and depletion types MOSFET, Classification of MOS: NMOS, PMOS and CMOS I/V characteristics, Biasing of FET, Low and high frequency response of common source and common emitter configuration, Common base and Common gate cascade configurations, CC-CE cascade	8	CO2
3	Amplifiers	Small signal amplifiers: BJT and MOSFET, Frequency response improvement, Classification of amplifiers: Class A, Class B, Class C amplifiers, Power amplifiers, push pull amplifiers, DC amplifier, coupling methods.	8	CO3
4	Feedback amplifiers	Basic concept, General feedback structure, properties of negative feedback, four basic feedback topologies: series-series, series-shunt, shunt-series and shunt-shunt, determination of Loop gain, stability analysis, wave shaping circuits.	8	CO4
5	Filters & Oscillators	Active filters, Oscillators, condition for oscillation, Basic principles of sinusoidal oscillator, RC oscillators, Phase Shift oscillator, Wein bridge oscillator, Hartley and Colpitt's oscillator, Crystal Oscillator, Operational amplifier: Characteristics and application	8	CO5

- 1. A.S. Sedra and K.C. Smith, "Microelectronic circuits", Oxford University Press (India). 2. B.P. Singh & R. Singh, Electronics Devices & Integrated Circuits, Pearson.
- 2. Millman, J. and Grabel, A., 'Microelectronics',/McGraw Hill.
- 3. Bell, David A,'Electronic Devices & Circuits', Prentice Hall (India) 4th Edition.
- 4. Nair, B. Somanathan, 'Electronics Devices & Applications', Prentice-Hall (India)
- 5. Neamen, Donald A., 'Electronic Circuit Analysis & Design', Tata McGraw Hill.
- 6. Sedra, 'Micro Electronics Circuits', Oxford University Press.

e-I	Learning	Source:

						Cour	se Arti	culatio	n Matr	ix: (Map	ping of	COs witl	POs an	d PSOs)				
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	3	2	2	2	3	3	1	1	1		2	2	2	2	2	2		
CO2	3	3	2	3	2	3	2						2	2	1	2		
CO3	3	2	3	2	2	2	1	1			1	1	2	3	2	2		
CO4	3	1	1	1	2	2	2						2	2	1	2		
CO5	3	1	1	1	2	2	2						2	3	1	3		

1-Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Effective from Session: 2016	-17						
Course Code	EE207	Title of the Course	Fundamentals of EMFT	L	T	P	C
Year	2 nd	Semester	3^{rd}	3	1	0	4
Pre-Requisite	None						
Course Objectives	• To ma • To the	ace and obtain the solution analyze the electrostatic realize and examine the gnetic materials recognize the concepts of Concepts of Displacements	about Coordinates systems. To develop ability for analysis on of electromagnetic problems by Vector theorems and Opes problems by applying fundamental law's. magneto statics problems and response the behavior of magnetostatics problems and response the behavior of magnetostatics problems and response the behavior of magnetic Current and Maxwell equation by investigation in real ment Current and Wave Propagation. Guided Waves and transmission lines by various parameters	erators gnetic	s. fields ir domain	n differe	

	Course Outcomes
CO1	Given a physical quantity, students shall be able to represent this in vector and scalar form, identify type of system, apply vector algebra, and formulate the expression in different coordinates and solve using vector theorems.
CO2	Given a electrostatic problems of passive elements with sources, student shall be able to analyze and evaluate the problems using Gauss laws and Divergence theorem.
CO3	For a given magneto-static situation, student shall be able to generate its analytical response by Biot Savart's law and examine, analyze and evaluate the characteristics by Maxwell's Equation and Boundary Conditions
CO4	For a given Time varying function, students shall be able to identify its characteristics and for Wave Propagation, select suitable design of application of Maxwell's equation, develop various combination for Power by Pyonting Vector and explain the functions of its main components.
CO5	Given a Guided Waves and Transmission line, student shall be able to define its parameters, solve/ analyze, and modify its form

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
		Review of scalar and vector field, Co-ordinates systems and their transformation (Cartesian, cylindrical and spherical). Vector representation of surfaces, Del operator, Gradient of	8	CO1
1	Unit I	Scalar, Divergence of vector and Divergence theorem, Curl of vector and Stocks Theorem, Laplacian of Scalar.		
	Electrostatic Fields	Coulombs law and field Intensity, Electric flux density, Gauss's law and its application,	8	CO2
2		Electric potential, Electric dipole and flux lines, Energy density. Introduction to conductors,		
_		Dielectrics polarization, Continuity equation, boundary conditions, Poisson's and Laplace's equation.		
	Magneto-static	Biot-Savarts Law, Ampere's circuit law, Magnetic flux density, Magnetic scalar and vector	8	CO3
3	Fields	potentials. Force due to magnetic fields, Lorentz-force equation, Magnetic torque and		
	TD1 X7 1	moment Magnetization in material, Boundary conditions, Energy density.	0	GO 1
	Time-Varying Fields & Wave	Faraday"s law, displacement current, Maxwell's equation in integral and point form, Time	8	CO4
4	propagation	varying potential, Time Harmonic Fields. Propagation of uniform plane waves in free space, dielectric and conductors, Pyonting theorem and power flow, Reflection of plane wave at		
	propagation	Normal Incidence.		
	Guided waves &	Introduction to guided waves, Rectangular waveguide. Transmission line parameter,	8	CO5
5	Transmission line	Transmission line equations, Characteristic impedance, propagation constant (for lossless		
,		lines and Distortion-less lines), Input impedance, reflection coefficient, Standing wave ratio		
		and Power. Open and short circuited lines.		<u> </u>

- 1. Elements of Electromagnetics- "M.N.O. Sadiku", oxford University Press
- 2. Electromagnetic waves and Radiating systems- E.C.Jorden, D.G.Balmein
- 3. Engineering Electromagnetics- "W.H.Hayt & J.A. Buck", TMH.
- 4. Electromagnetic- J.F.D.Kraus, R.C.Keith

e-J	Learni	ing S	Sour	ce:

						Cour	se Arti	culatio	n Matr	ix: (Map	ping of	COs witl	POs an	d PSOs)				
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO																		
CO1	3	3	2	1	2	1							2			2		
CO2	3	3	1	1	2								1	2	1	2		
CO3	3	3	1	1	2								1	3		2		
CO4	3	3	1	1	2							1	1	2		2		
CO5	3	3	2	2	2		1	1					2	3		3		

1-Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Effective from Session: 2016	5-17										
Course Code	EE209	Title of the Course	Electrical Measurement & Measuring Instruments	L	Т	P	C				
Year	2 nd	Semester	3 rd	3	1	0	4				
Pre-Requisite	Requisite None Co-requisite None None To understand the measurement system, measurement methods and errors, measurement of electrical quantities										
Course Objectives	To understand energy meter To understand To understand	I three phase power mea and instrument transfor I measurement of low, I I use of ac potentiomete	asurement; working of thermocouple, electrostatic and rectif	ier typ							

	Course Outcomes
CO1	Adopt the methods of measurement, investigate the errors in measurement, analyze and rectify; perform analog measurement of electrical quantities; contribute in related development
CO2	Perform three phase power measurement; use thermocouple, electrostatic, rectifier type instruments, energy meter and instrument transformer for measurement; identify errors in energy meter and adopt remedies; adopt extension of instrument range using instrument transformer; contribute in related development
CO3	To perform measurement of low, medium and high resistances; perform measurement of inductance and capacitance using ac brides; adopt use of Q meter, contribute in related development
CO4	To adopt use of ac potentiometer; perform measurement of speed, frequency and power factor; contribute in related development
CO5	To perform digital measurement of electrical quantities; adopt application of CRO, dual trace and dual beam oscilloscopes; contribute in related development

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Unit I	Philosophy of measurement: Methods of measurement, measurement system, classification of instrument system, characteristics of instrument and measurement system, error in measurement and its analysis. Analog measurement of electrical quantities: PMMC type Instruments, Moving Iron type Instruments, Electrodynamics type Instruments' three phase wattmeter, error and remedies in wattmeter.	8	CO1
2	Unit II	Power measurements in three phase system, Thermocouple, electrostatic and rectified type ammeter and voltmeter, Energy meter, error and remedies in energy meter. Instrument transformer and their application in the extension of instruments range.	8	CO2
3	Unit III	Measurement of parameter: Different methods of measurement of low, medium and high resistances, measurement of inductance and capacitance with the help of AC bridges, Q-meter.	8	CO3
4	Unit IV	AC Potentiometer: Polar type and co-ordinate type AC potentiometer, application of AC potentiometers in electrical measurement. Measurement of speed, frequency and power factor.	8	CO4
5	Unit V	Digital measurement of electrical quantities: concept of digital measurement, block diagram, study of digital voltmeter, frequency meter, Cathode ray oscilloscope: Basic CRO circuit (block diagram), cathode ray tube (CRT), and its components, application of CRO in measurement, Lissajous pattern, Dual trace and dual beam oscilloscopes.	8	CO5

Reference Books:

- 1. E.W. Golding & F.C. Widdis, "Electrical measurement & Measuring Instrument", A. W. Wheeler & Co. Pvt. Ltd. India.
- 2. A.K. Sawhney, "Electrical & Electronics Measurement & Instrument", Dhanpat Rai & Sons, India.
- 3. M.B. Stout ,"Basic Electrical Measurement" Prentice hall of India, India.
- 4. Forest K. Harries," Electrical Measurement", Willey Eastern Pvt. Ltd. India.

e-Learning Source:

						Co	ourse A	Articul	ation N	Aatrix:	(Марріі	ng of COs	s with PO	s and PSO	Os)			
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO																		
CO1	3	3	1	2	3							2	2	2		3		
CO2	3	3	1	2	3							2	2			3		
CO3	3	1	1		3							2	2			3		
CO4	3	1	1		3							2	2			3		
CO5	3	1	1		3							2			2	3		

Effective from Session: 2022-	Effective from Session: 2022-23										
Course Code	EE 202	Title of the Course	Network Lab	L	T	P	C				
Year	II	Semester	III	0	0	2	1				
Pre-Requisite	EE103	Co-requisite	NIL								
Course Objectives	To analyTo know	ze the theoretical & pra about transient state ar	out basic laws & Theorems. ctical values of given circuit. ad steady state. out stability, two-port network and graph theory.								

	Course Outcomes
CO1	Adopt, perform, analyze and implement the methods of measurement of electrical quantity of Theorems by Multimeter; contribute in related development
CO2	Adopt, perform, analyze and implement the methods of measurement of electrical quantity of RC, RL and RLC circuit byCRO; contribute in related development
CO3	Adopt, perform, analyze and implement the methods of two-port networks; contribute in related development
CO4	For given a system with RL, RC, and RLC circuits, would be able to understand, perform, formulate, and solve the differential equations for RL, RC, and RLC circuits and analyze the characteristics of the system.

Exp. No.	Content of Experiment	Contact Hrs.	Mapped CO
1	To verify Superposition theorem for dc network	2	1
2	To verify Thevenin's theorem for dc network	2	1
3	To verify Tellegen's theorem for dc network	2	1
4	To verify Maximum power transfer theorem for dc network	2	1
5	To study transient response of RC series circuit	2	2,4
6	To study frequency response of RLC series circuit	2	2,4
7	To determine the h-parameter of a port resistive network	2	3
8	To determine the z-parameter of a port resistive network	2	3
9	To determine the ABCD-parameter of a port resistive network	2	3
10	To study transient response of RLC series circuit	2	2,4

Reference Books:

- 1. M. E. Van Valkenburg, "Network Analysis", Chaukhamba Auriyantaliya Publication, 3rd Edition, 2010.
- 2. J. A. Edminister, "Electric Circuits", Schaum Outline Series, McGraw Hill Education; 5th edition, 2017.
- 3. W. H. Hayt and Jack E. Kammerly, "Engineering Circuit Analysis", McGraw Hill Education; Eighth edition, 2013.
- 4. A. Hussain, "Network and Systems", Khanna Book Publishing Co. (P) Ltd.; Second edition, 2019.

e-Learning Source:

PO-PSO		Course Articulation Matrix: (Mapping of COs with POs and PSOs)														
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	3	3	3	2	1		1	1	1		2	2	3	3	3
CO2	3	2	3	3	2	2	1	2		1		1	2	3	3	3
CO3	3	3	2	3	2	1							2	3	3	1
CO4	3	2	2	3	1			1				1	2	3	3	1

Effective from Session: 2016	5-17												
Course Code	EE 204	Title of the Course	Electromechanical Energy Conversion-I Lab	L	T	P	C						
Year	II	Semester	III	0	0	2	1						
Pre-Requisite		Co-requisite											
	• Une	Understand the principles of operation of starters used in dc machines											
Garage Older diese	 Per 	form the speed control of	of different dc machines										
Course Objectives	 Evaluate the performance of dc machines and transformers 												
	• Per	Perform testing of dc machines and transformers											

	Course Outcomes
CO1	Knowledge of different starters used in dc machines
CO2	Perform speed control of dc motor
CO3	Determine the losses in transformers using OCT, SCT and Sumpner's test
CO4	Determine the performance of DC machines and transformers

Exp. No.	Title of the Unit	Content of Experiment	Contact Hrs.	Mapped CO
1		To study three point starter	2	1
2		To obtain and plot magnetization characteristic of dc shunt generator.	2	4
3		To obtain characteristic of a dc shunt generator.	2	4
4		To obtain load characteristic of a dc compound generator	2	4
5		To study speed control of a dc shunt motor.	2	2
6		To obtain load characteristic of dc series generator.	2	4
7		Polarity test of single phase transformer	2	3
8		Parallel operation of D.C Generators.	2	4

Reference Books:

- 1. V. Deltoro, "Principle of Electrical Engg.", PHI, 2009
- 2. M. A. Mallick, Dr. I. Ashraf, "Fundamental of Electrical Engg,", CBS Publishers, 2010.
- 3. A. Hussain, "Basic Electrical Engg.", Dhanpat Rai & Sons, 2007
- 4. I. J. Nagrath, "Basic Electrical Engg.", TMH, 2010.

e-Learning Source:

v-lab (IIT Roorkee Website)

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)														
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	3	1	2	3							2	2	2	3	1
CO2	3	3	1	2	3							2	2		1	1
CO3	3	1	1		3							2	2	3		1
CO4	3	1	1		3							2	2		3	1

Effective from Session: 2016	5-17									
Course Code	EE 206	Title of the Course	SSDC Lab	L	T	P	C			
Year	II	Semester	III	0	0	2	1			
Pre-Requisite		Co-requisite								
Course Objectives		develop knowledge and application of fundamental electronic circuits and physical electronics of some kniconductor devices, including design, construction and testing of experimental electronic circuits.								

	Course Outcomes
CO1	To designing concept of special purpose diodes for different types of operation for industrial application purpose. Understand the advancement in conductivity of semiconductors material. Analysis the different regions in which BJT operates and their applications as a switch, amplifiers etc
CO2	Understand the advancement in transistors like JFET, MOSFET, PMOS, NMOS, CMOS etc. and their various types' of applications in Industries. Analyze the frequency response of these devices as different amplifier applications. To Understand how the gain of amplifier effected with frequency changes and their applications.
CO3	Developing the concept of feedback amplifiers, their different topologies and implement it for various applications. To analyze their stability and their responses for different applications.
CO4	To analyze the design considerations of the active and passive filters. How to develop the various orders of filters and their industrial applications. To understand the constructional difference and working of various types of oscillators. How the oscillators can be developed and their use in industries.

Exp. No.	Title of the Unit	Content of Experiment	Contact Hrs.	Mapped CO
1		Study of Clipping circuit and Clamping circuit	2	3
2		Study of LED (Red, Green, Yellow)	2	1
3		Study of single stage RC coupled transistor amplifier	2	2
4		Study of Emitter follower circuit and determine and determine a) Maximum signal handling capacity at 1 KHz at no load b) Plot frequency response at no load	2	1
5		Study of Wein's Bridge oscillator a) Determine the frequency of oscillation b) Determine the value of unknown capacitance C _x	2	4
6		Application of operation amplifier as Inverting, Non- Inverting, and unit gain amplifier(buffer).	2	3
7		Application of an operational amplifier as a differentiator and integrator. Plot frequency response	2	3
8		Study of MOSFET, plot V-I characteristics of N-MOS and P-MOS, find r _d ,g _m and draw equivalent circuit.	2	2
9		Study of Clipping MOSFET as an amplifier (CS)	2	2
10		Study of Differential Amplifier using BJT	2	3

Reference Books:

- 1. VBell, David A/ "Electronic Devices & Circuits"/Prentice Hall (India) 4th Edition.
- 2. A.S. Sedra and K.C. Smith, "Microelectronic circuits", Oxford University Press (India).
- 3. Millman, J. and Grabel, A./" Microelectronics"/McGraw Hill.
- 4. Neamen, Donald A./ "Electronic Circuit Analysis & Design"/Tata McGraw Hill.

e-Learning Source:

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)														
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	3	1	2	3							2	2	2	3	1
CO2	3	3	1	2	3							2	2		1	1
CO3	3	1	1		3							2	2	3		1
CO4	3	1	1		3							2	2		3	1

Effective from Session: 2016	5-17															
Course Code	EE 208	Title of the Course	ELECTRICAL WORKSHOP LAB	L	T	P	C									
Year	II	Semester	III	0	0	2	1									
Pre-Requisite		Co-requisite														
Course Objectives	 To 	 To understand and experiment with the measurement of Electronic Circuits and systems. To understand and experiment with the Semiconductor devices and integrated circuits. To understand and experiment with Transformer assembly. 														
	• To	understand Printed Circ	uit Board and Preparation of PCB.		 To understand and experiment with Transformer assembly. To understand Printed Circuit Board and Preparation of PCB. 											

	Course Outcomes
CO1	Adopt, perform, analyze and implement the methods of components of Electronic Circuits and systems.
CO2	Adopt, perform, analyze and implement the concepts of Transformer, Chokes, Potentiometer.
CO3	Adopt, perform, analyze the Semiconductor devices and integrated circuits.
CO4	Adopt, perform, and implement the designing of Printed Circuit Board (PCB) and related development

Exp. No.	Title of the Unit	Content of Experiment	Contac t Hrs.	Mapped CO
1		To study the components of Electronic Circuits and systems. Types according to construction, rating and tolerance of Resistors, Capacitors, Inductors.	2	1
2		Study of Transformer, Chokes, Potentiometer, Switches and Rectifiers.	2	2
3		To study Semiconductor devices and integrated circuits: different rating and packages. Power Semiconductor devices and Heat Sinks.	2	3
4		To perform winding of Transformer, assembly of core and complete the transformer and also explain the various materials involved in it.	2	2
5		Preparation of Printed Circuit Board (PCB) and perform drilling on the PCB.	2	4
6		To perform soldering of components on the PCB and assembled circuit.	2	2
7		To perform Assembly of Electronic Circuits and Systems- Soldering and Communication Cable jointing. Bread Board Assembly of a regulated d.c. power supply.	2	3
8		Assembling of an unregulated DC power supply in a steel cabinet along with complete wiring.	2	4
9		Mini project (I): Stair case wiring.	2	4
10		Mini project (II): Core type transformer winding.	2	4

Reference Books:

- 1. R.P Singh Electrical Workshop, I.K. International Publishing House Pvt. Limited, 2005
- 2. A Textbook of Electrical Workshop Practices ,S.K. Kataria & Sons: 2019
- 3. P. S. Bimbhra Electrical Machinery : Dhanpat Rai & sons, 2007
- 4. I J Nagrath, "Basic Electrical Engg", TMH, 2010.

e-Learning Source:

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)														
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	3	1	2	3							2	2	2		3
CO2	3	3	1	2	3							2	2			3
CO3	3	1	1		3							2	2			3
CO4	3	1	1		3							2	2			3

Effective from Session: 2022	2-23										
Course Code	EE211	Title of the Course	Electro Mechanical Energy Conversion II	L	T	P	C				
Year	2 nd	Semester	4 th	3	1	0	4				
Pre-Requisite	None	Co-requisite	None								
	Knowledge of principle of operation of three phase ac motors										
	 Identify different ac motors on the basis of characteristics 										
Course Objectives	• Ana	alyze different ac machi	nes								
 To evaluate the performance of ac machines Knowledge of parallel operation of ac generators 											

	Course Outcomes
CO1	Knowledge of different types of three phase induction machines
CO2	Analyze the induction machines performance under loading condition
CO3	Evaluate the performance of single phase ac machines
CO4	Knowledge of three phase synchronous machines
CO5	Evaluate the performance of synchronous machines

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	INDUCTION MACHINE I	Electro-mechanical energy conversion principles: Force and EMF production in a rotating machine Classification of rotating machine;	8	CO1
	MACHINET	3-phase Induction Machines: Types, construction, Introduction to windings and winding factor		
	INDUCTION	Production of revolving magnetic field, working principle on 3-phase induction machine,	8	CO2
2	MACHINE II	equivalent circuit, phasor diagram, Losses and power flow diagram, slip-torque curves, no		
		load and blocked rotor tests, starting methods, speed control		
	SELECTED	Space harmonics, effects of space harmonics; cogging, crawling, and noise.	8	CO3
3	TOPICS IN	Single-phase induction motors: Principle of operation; double revolving field and cross field		
3	ELECTRICAL	theories; equivalent circuit and torque-speed characteristics; Starting methods of single-phase		
	MACHINES	induction motors: split-phase and shaded pole motors. Induction generator and its applications		
	SYNCHRONOUS	Construction, armature reaction and two reaction theory, synchronous reactance and phasor	8	CO4
	MACHINES- I	diagram, expression for power developed and power angle curve for salient and non-salient		
4		pole machines, maximum power. Open circuit, short circuit and zero power factor tests,		
		Alternator load characteristics. Voltage regulation and its determination by synchronous		
		impedance and Potier triangle method.		
	SYNCHRONOUS	Synchronization of three phase alternators, effect of governor characteristics on load sharing	8	CO5
5	MACHINES- II	of alternators, operation on infinite bus bars, active and reactive power control. Synchronous		
		motors: methods of starting, synchronizing power, hunting, V-curves, synchronous condenser		

Reference Books:

- 1. D.P. Kothari & I.J. Nagrath, 'Electric Machines', Tata Mc Graw Hill, 2004.
- 2. Ashfaq Hussain , 'Electric Machines', Dhanpat Rai & Company, 2010.
- 3. Fitzerald ,A.E., Kingsley and S.D.Umans, 'Electric Machinery', MC Graw Hill,2014.
- 4. P.S.Bimbhra, 'Electrical Machinery', Khanna Publishers, 2003
- 5. P.S. Bimbhra, 'Generalized Theory of Electrical Machines', Khanna Publishers ,1995
- 6. M.G.Say, 'Alternating Current Machines', Pitman & Sons,3rd Edition, 1995.

e-Learning Source:

						Co	ourse A	rticul	ation N	Aatrix:	(Mappii	ng of CO	s with PO	s and PSC	Os)			
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO																		
CO1	3	2		1									2		2	3		
CO2	3	2		1									2	3	2	2		
CO3	3	1										2	2	3	2	3		
CO4	3	2										1	2	3	2	3		
CO5	3	2					1						2	3	3	2		

1-Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Effective from Session: 2022	2-23								
Course Code	EE213	Title of the Course	Numerical Analysis and Applications	L	T	P	C		
Year	2 nd	Semester	4 th	3	1	0	4		
Pre-Requisite	None	None Co-requisite None							
Course Objectives	nume To s comp To s form To c inter	erical results of the probolve problems in the fouting of numerical results olve complex mathematical deal with various topic polation and regression	field of applied mathematics, theoretical physics and engults using certain raw data. atical problems using only simple arithmetic operations. models of physical situations that can be solved with arithm s like finding roots of equations, solving systems of lin analysis, numerical integration & differentiation, solution and solution of matrix problems.	gineeri The netic o	ng whi approac peration gebraic	ch requ ch invo ns. equati	lires		

	Course Outcomes
CO1	Apply Numerical analysis which has enormous application in the field of Science and some fields of Engineering.
CO2	Describing and understanding of the several errors and approximation in numerical methods.
CO3	The explaining and understanding of the several available methods to solve the simultaneous equations by modern IT tools.
CO4	To solve problems in the field of applied mathematics, theoretical physics and engineering which requires computing of numerical results using certain raw data by using modern tools and follow the ethical rules.
CO5	To deal, communicate and environment sustainability with various topics like finding roots of equations, solving systems of linear algebraic equations, interpolation and regression analysis, numerical integration & differentiation, solution of differential equation, boundary value problems, and solution of matrix problems in the field of Engineering and modern life.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Errors and approximations	Error definitions, accuracy and precision, round off and truncation errors Roots of equations- Solution of Algebraic and Transcendental equations, Newton- Raphson method, Secant method, Bisection method, Fixed Iteration method, Regula-Falsi method. Finite differences- Forward differences, Back ward differences, Central differences.	8	CO1
2	Solutions of simultaneous linear algebraic equations	Gauss elimination method, Gauss-Jordan method, Matrix inversion method, LU decomposition methods, iterative method: Gauss-Seidel, Jacobi's method	8	CO2
3	Curve fitting	Introduction, method of least square, fitting of a straight line by method of least square, change of origin and scale, normal equations for different form of curve. Interpolation with equal and unequal intervals: Newton's Gregory forward interpolation, Newton's Gregory backward interpolation, Newton's divided difference interpolation, Lagrange's interpolation	8	CO3
4	Numerical differentiation	Newton's Gregory forward interpolation formula to get derivatives, Newton's Gregory backward interpolation formula to get derivatives, Newton's divided difference interpolation formula to get derivatives, Lagrange's interpolation formula to get derivatives Numerical integration: Newton-cotes quadrature formula, Trapezoidal rule, Simpson's rule, Boole's rule, Weddle's rule	8	CO4
5	Numerical solutions for ordinary differential equations	Initial and Boundary value problems, Picard method of successes approximation, Taylor's series method, Euler's method, Modified Euler method, Runge-Kutta Method (First, second, third and fourth order)	8	CO5

- 1. <u>Josef Stoer</u> and <u>R. Bulirsch</u>, "Introduction to Numerical Analysis" Springer Science & Business Media, ISBN 978-1-47575-592-3, Third Edition, 2013.
- 2.<u>Lloyd N. Trefethen</u> and <u>David Bau III</u>, "Numerical Linear Algebra", *Society of Industrial and Applied Mathematics*, ISBN: 978-0-898713-61-9, Illustrated edition, 1997.
- 3.C. T. Kelley, "Iterative Methods for Linear and Nonlinear Equations", Frontiers in Applied Mathematics, Society for Industrial and Applied Mathematics, Philadelphia, ISBN:978-0-89871-352-7, 1995.

e-J	Learni	ing S	ource:

						C	ourse A	Articul	ation N	Aatrix:	(Mappi	ng of COs	s with PO	s and PSO	Os)			
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO CO1	3	2		1									1		1	2		
CO2	3	2					1							2		2		
CO3	3	1										2		2		3		
CO4	3	2										1	2		2	2		
CO5	3	2					1							3		2		

1-Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Effective from Session: 20	16-17						
Course Code	EE217	Title of the Course	Signal System Analysis	L	T	P	C
Year	2 nd	Semester	4 th	3	1	0	4
Pre-Requisite	None	Co-requisite	None				
Course Objectives	• De	monstrate an understand	ling of the fundamental properties of linear systems				
Course Objectives	• Us	es of transform analysis	and convolution, to analyze and predict the behavior of line	ar time	e invaria	ant syste	ems

	Course Outcomes
CO1	Understand mathematical description and representation of continuous and discrete time signals and systems.
CO2	Develop input output relationship for linear time invariant system and understand the convolution operator for continuous and discrete time system.
CO3	Understand and resolve the signal in frequency domain using Fourier series and Fourier transforms.
CO4	Understand the limitations of Fourier transform and need for Laplace transform and develop the ability to analyze the system in s- domain
CO5	Analyze the discrete time signals and system using DTFT, DFT and Z

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Formalizing Signals	Continuous-time/discrete-time, Periodic/non-periodic, even/odd, energy/power, deterministic/ random, Unit step, Unit ramp, Unit impulse, Sinusoid, complex exponential signals. Signal Properties: Periodicity, absolute integrability, determinism and stochastic character. System properties: Linearity, additivity and homogeneity, Scaling, shift invariance, causality. Continuous and discrete time linear shift invariance system: The impulse response and step response, convolution, input-output behavior.	8	CO1
2	Fourier Transform Analysis	Fourier series representation, Exponential and compact trigonometric form of Fourier series, Fourier symmetry, Fourier Transform, convolution/ multiplication and their effect in frequency domain, magnitude and phase response, Fourier domain duality, inverse Fourier transform, Application to circuit analysis, Dirichlet's condition.	8	CO2
3	Discrete Fourier Transform	Discrete time Fourier transform (DTFT), Discrete Fourier transform (DFT), Parsevals theorem, properties convergence, Sampling theorem and its implication, Reconstruction: Ideal interpolator, zero order hold, aliasing and its effect, Relation between continuous and discrete time system.	8	CO3
4	Laplace Transform	Laplace Transform for continuous time signals and systems: The notion of Eigen function of LSI system, region of convergence, system functions, poles and zeros of system functions and signals Convolution theorem, Laplace domain analysis, Waveform synthesis, solution to differential equation and system behavior.	8	CO4
5	Z-Transform Analysis	Z Transform for discrete time signal and system, Eigen function , region of convergence ,system function, poles and zeroes of system sequences, Z domain analysis, solution of difference equation, pulse transfer function	8	CO5

Reference Books:

- 1. S.H. Saeed, Faizan Arif Khan, "Basic System Analysis" 2nd Edition, Katson Publishing Delhi.
- 2. A.V. Oppenhiem, A.S. Wilsky and I.T. young, "Signals & Systems", Prentice Hall, 1983
- 3. M E Van-Valkenberg; "Network Analysis", Prentice Hall of India.
- 4. B. P. Lathi, "Linear Systems & Signals" Oxford University Press, 2008.
- 5. I. J. Nagrath, S.N. Saran, R. Ranjan and S. Kumar, "Signals and Systems", Tata Mc. Graw Hill

e-Learning Source:

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)																
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	3	3		2		1			1	1		1	2			3		
CO2	3	3	2	2					1	1		1		2		2		
CO3	3	3	2	2		1			1	1		1			2	2		
CO4	3	3	2	2		1			1	1		1		2		2		
CO5	3	3	2	2		1	1		1	1		1		2		2		

Effective from Session: 2016	5-17												
Course Code	EE221	Title of the Course	Electrical Engineering Materials L T										
Year	2 nd	Semester	4 th	3	1	0	4						
Pre-Requisite	None	7.1.4											
Course Objectives	To mailTo poilToTo	understand the impact nufacturability and sustant know the properties of nt of view.	material science engineering. It of realistic constraints such as economic, environmentalinability. conducting, insulating, dielectric and magnetic materials from the semiconducting devices with their application. skills, and modern engineering tools necessary for electrical	om ele	ctrical 6	enginee	ring						

	Course Outcomes
CO1	To provide students with a thorough understanding of the electrical properties and characteristics of various materials used in the electrical
	appliances, devices, instruments and in the applications associated with generation, transmission and distribution of electric power.
CO2	To provide students with a thorough understanding of the electrical properties and characteristics of various materials used in the electrical
	appliances, devices, instruments and in the applications associated with generation, transmission and distribution of electric power.
CO3	To provide students with a moderate level understanding of the physics behind the semiconductors.
CO4	To provide students with a thorough understanding of the electrical properties and characteristics of various materials used in the electrical
	appliances, devices, instruments and in the applications associated with generation, transmission and distribution of electric power.
CO5	An understanding of the electrical engineering material science essential for them to work in different fabrication based industries and also
	motivate them to do innovative characterization based research while going for higher studies and also to work in R & D with scientific
	enthusiasm

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Classification of Materials	Metals and alloys, polymers, conducting materials, characteristic of good conductors, commonly used conducting materials, smart materials, fuel cell, super alloys, memory alloys, degradation of materials,	8	CO1
2	Dielectrics, Insulating and Conducting Materials	Dielectric strength, factor affecting strength, polarization, dielectric loss, Types of capacitor, Insulating & Dielectric Materials - Properties of insulating materials, classification of insulating materials, Piezoelectricity, Ferro electricity, Principle and Applications of Optical Fiber, Material for OH lines and UG cables, Fuse, soldering, Effect of temperature on transformer oil	8	CO2
3	Semiconductors and their Applications	Types of semiconductor, direct and indirect band gap, semiconductor application and advantages of semiconducting devices, photo conducting cell, Hall effect generator, MHD generator, LEDs, photodiode, Introduction to LCD.	8	CO3
4	Magnetic Materials and their Applications	Basic concepts and definitions, origin of magnetism, dia, Para, Ferro, anti Ferro, ferri magnetism, Curie Temperature, Hysteresis and its significance, soft and hard magnetic materials, ferrites, silicon steel, their properties and uses, magnetic resistance.	8	CO4
5	Fabrication and Characterization of Materials	Planar process,, lithography, etching, spin coating, sputtering, CVD, carbon nanotube, nanowires (synthesis, properties and applications), Material characterization techniques such as scanning electron microscopy, transmission electron microscopy, Scanning tunneling microscopy, atomic force microscopy, differential scanning calorimetry.	8	CO5

- 1. A. J. Dekker, Electrical Engineering Materials, PHI.
- 2. C.S Indulkar & S.Thiruvegada, An introduction electrical Engg Materials, S. Chand & Co.
- 3. S.O Kasap, Principles of Electronic Materials & Devices, TMH
- 4. L.V Azaroff, Introduction to Solids, Mc Grow Hill Company
- 5. Charles Kittle, Quantum theory of Solids, John Wiley and Sons

e-Learni	ng Source:
----------	------------

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)																
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO																		
CO1	3	2		1									2	3		1		
CO2	3	2											3	3		1		
CO3	3	2		2								3	1	3		1		
CO4	2	1										3	2	2		2		
CO5	3		3									1	3	3				

1-Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Effective from Session: 2016	5-17						
Course Code	EE 210	Title of the Course	Electrical Measurement Lab	L	T	P	C
Year	II	Semester	IV	0	0	2	1
Pre-Requisite		Co-requisite					
Course Objectives	ToTo	understand and experim understand and experim	ent with the measurement of electrical quantity by DC Bridgent with the measurement of electrical quantity by AC Bridgent with the calibration of voltmeter ent with the calibration of ammeter	-			

	Course Outcomes										
CO1	Adopt, perform, analyze and implement the methods of measurement of electrical quantity by DC Bridge; contribute in related										
	development										
CO2	Adopt, perform, analyze and implement the methods of measurement of electrical quantity by AC Bridge; contribute in related development										
CO3	Adopt, perform, analyze and implement the methods of calibration of voltmeter; contribute in related development										
CO4	Adopt, perform, analyze and implement the methods of calibration of ammeter; contribute in related development										

Exp. No.	Title of the Unit	Content of Experiment	Contact Hrs.	Mapped CO
1		Measurement of Low Resistance by Kelvin's Double Bridge	2	1
2		Measurement of Self-Inductance by Maxwell's Bridge	2	2
3		Measurement of Self-Inductance by Hay's Bridge	2	2
4		Measurement of Capacitance by Schering's Bridge	2	2
5		Measurement of Capacitance by De Sauty's Bridge	2	2
6		Measurement of Frequency by Wein's Bridge	2	2
7		Calibration of Voltmeter	2	3
8		Calibration of Ammeter	2	4

Reference Books:

- 1. V.Deltoro, "Principle of Electrical Engg." PHI, 2009
- 2. M.A Mallick, Dr. I. Ashraf, "Fundamental of Electrical Engg," CBS Publishers, 2010.
- 3. A. Hussain, "Basic Electrical Engg" Dhanpat Rai & sons, 2007
- 4. I J Nagrath, "Basic Electrical Engg", TMH, 2010.

e-Learning Source:

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)														
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	3	1	2	3							2	2	2		3
CO2	3	3	1	2	3							2	2			3
CO3	3	1	1		3							2	2			3
CO4	3	1	1		3							2	2			3

Effective from Session: 2016-17											
Course Code	EE 212	Title of the Course	Electromechanical Energy Conversion II Lab	L	T	P	C				
Year	II	Semester	r IV				1				
Pre-Requisite		Co-requisite									
Course Objectives	PerPer	rform testing of thre rform speed control	ole of operation of different AC starters used in A see phase induction motor of AC motors nee of AC machines	C ma	achine	s starti	ing				

	Course Outcomes
CO1	Analyze and operate different starters used for starting AC motors
CO2	Knowledge of principle of operation of single phase and three phase induction motors
CO3	Evaluate the performance of single phase and three phase induction motors
CO4	Analyze the performance of synchronous generators and synchronous motors

Exp. No.	Title of the Unit	Content of Experiment	Contact Hrs.	Mapped CO
1		To study DOL and Star Delta starter.	2	1
2		To Study the operation of three phase Slip Ring Induction Motor.	2	2
3		To study single phase capacitor start induction motor and observe (a) effect of capacitor (b) reversal of direction of induction motor.	2	3
4		No load test and Blocked Rotor Test on Three Phase Induction Motor	2	3
5		To study of synchronization of an alternator by two bright method & one dark lamp method.	2	4
6		To study speed control of 3 phase squirrel cage induction motor using stator voltage control.	2	3
7		To obtain V- curve and inverted V curve of synchronous motor	2	5
8		To study speed control of three phase squirrel cage induction motor by frequency variation method.	2	3

Reference Books:

- 1. V. Deltoro, "Principle of Electrical Engg.", PHI, 2009
- 2. M. A. Mallick, Dr. I. Ashraf, "Fundamental of Electrical Engg.", CBS Publishers, 2010.
- 3. A. Hussain, "Basic Electrical Engg." Dhanpat Rai & Sons, 2007.
- 4. I. J. Nagrath, "Basic Electrical Engg.", TMH, 2010.

e-Learning Source:

Virtual Lab ,IIT Roorkee

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)														
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	2	3									3	2	2		
CO2	3	2	3									3	2		3	
CO3	3	1	3									3	2	3		
CO4	3	1	3									3	2			3

		III CGI ui	chiversity, Euclidew									
Effective from Session	1: 2022-23											
Course Code	EE 214	Title of the Course	L	Т	P	C						
Year	II	Semester	IV	0	2	1						
Pre-Requisite		Co-requisite										
	 To provide suitable and effective methods called Numerical Methods, for obtaining approximate representative numerical results of the problems. To solve problems in the field of applied mathematics, theoretical physics and engineering which requires computing of numerical results using certain raw data. 											
Course Objectives	To solve complex mathematical problems using only simple arithmetic operations. The approach involves formulation of mathematical models of physical situations that can be solved with arithmetic operations.											
	• To deal with various topics like finding roots of equations, solving systems of linear algebraic equations, interpolation and regression analysis, numerical integration & differentiation, solution of differential equation, boundary value problems, and solution of matrix problems.											

	Course Outcomes											
CO1	Adopt, perform, analyze and implement the methods of simulation and programming of roots of equation by MATLAB;											
	contribute in related development											
CO2	Adopt, perform, analyze and implement the methods of simulation and programming of linear algebraic equation byMATLAB;											
	contribute in related development											
CO3	Adopt, perform, analyze and implement the methods of simulation and programming of numerical integration and											
	differentiation by MATLAB; contribute in related development											
CO4	Adopt, perform, analyze and implement the methods of simulation, programming and plot of equation by MATLAB; contribute in related											
	development											

Exp. No.	Content of Experiment	Contact Hrs.	Mapped CO
1	Study the overview of MATLAB and basic mathematical operations.	2	1
2	Find the determinants and inverse of given matrix [A] using MALAB.	2	1
3	Solve the linear algebraic equations by using MATLAB. $5x=3y-2z+10; 8y+4z=3x+20; 2x+4y-9z=9$	2	2
4	Find the Eigen value & Eigen vectors of a given matrix A by using MATLAB.5x-3y+2z=10; -x+8y+4z=20; 2x+4y-9z=9	2	2
5	Plot the raw data to do fit linear curve and display the equation by using MATLAB. X= [5 10 20 50 100]Y= [15 33 53 140 301]	2	2,4
6	Solve the transcendental equation $\sin x=e^{X}-5$ & plot it by using MATLAB.	2	2,4
7	Evaluate function by Simpson's 1/3 rule using MATLAB.	2	3
8	Evaluate function by Simpson's 3/8 rule using MATLAB.	2	3
9	Find the roots & plot the error of the given $f(x) = x^3 - x - 1$ by Bisection method using MATLAB.	2	2,4
10	Find the root of the following equation's using Gauss Seidel Method.20x+y-2z=17; 3x+20y-z=18; 2x-3y+20z=25	2	2

Reference Books:

- 1. Josef Stoer and R. Bulirsch, "Introduction to Numerical Analysis" Springer Science & Springer & Springer
- 2. Lloyd N. Trefethen and David Bau III, "Numerical Linear Algebra", Society of Industrial and Applied Mathematics, ISBN: 978-0-898713-61-9, Illustrated edition, 1997.
- 3. C. T. Kelley, "Iterative Methods for Linear and Nonlinear Equations", Frontiers in Applied Mathematics, Society for Industrial and Applied Mathematics, Philadelphia, ISBN:978-0-89871-352-7, 1995.

e-Learning Source:

https://drive.google.com/drive/folders/1i52ieww0iq_YlYw7 7lX4q6RGHpP97B_u?usp=sharing

PO-PSO	Course Articulation Matrix: (Mapping of COs with POs and PSOs)															
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO																
CO1	3	3	3	2									1	3	1	3
CO2	1	3	3	1	1								1	3	1	3
CO3	2	1	3	3	3	1			1		1	1	2	3	2	2
CO4	3	2	1	1	3	1		2	1		1	1	2	3	2	2